
Incrementally Mining Temporal Patterns in Interval-based Databases

Yi-Cheng Chen1, Julia Tzu-Ya Weng2,3, Jun-Zhe Wang4, Chien-Li Chou4, Jiun-Long Huang4, and Suh-Yin Lee4
1Department of Computer Science & information Engineering, Tamkang University, New Taipei City, Taiwan

2Department of Computer Science & Engineering, Yuan Ze University, Taoyuan, Taiwan
3Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan

4Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
ycchen@mail.tku.edu.tw julweng@saturn.yzu.edu.tw {jzwang, fallwind, jlhuang, sylee}@cs.nctu.edu.tw

Abstract—In several applications, sequence databases
generally update incrementally with time. Obviously, it is
impractical and inefficient to re-mine sequential patterns from
scratch every time a number of new sequences are added into
the database. Some recent studies have focused on mining
sequential patterns in an incremental manner; however, most
of them only considered patterns extracted from time point-
based data. In this paper, we proposed an efficient algorithm,
Inc_TPMiner, to incrementally mine sequential patterns from
interval-based data. We also employ some optimization
techniques to reduce the search space effectively. The
experimental results indicate that Inc_TPMiner is efficient in
execution time and possesses scalability. Finally, we show the
practicability of incremental mining of interval-based
sequential patterns on real datasets.

Keywords- dynamic representation; incremental mining;
interval-based pattern; sequential pattern mining

I. INTRODUCTION

Sequential pattern mining is an essential data mining
technique with broad applications. Several efficient
algorithms exhibit excellent performance in discovering
sequential patterns from a static database, i.e., mining the
entire database from scratch. However, the assumption of
having a static database may not hold in some applications.
Usually, new data may be added over time. The result
discovered from the original database may no longer be valid.
Apparently, for each database update, re-mining the
databases from scratch is inefficient because it wastes the
computational resources and neglects the previous results.

Previous research on incremental mining [2, 4, 7, 8, 11,
17] mainly focused on sequential patterns discovered from
time point-based data. However, prior efforts have revealed
that mining time interval-based patterns is more practical [3,
5, 6, 9, 10, 12, 13, 15, 16] in reality. In many applications,
some events that intrinsically persist for periods of time
instead of instantaneous occurrences cannot be treated as
“time points.” The data is usually a sequence of interval
events with starting and finishing times. Examples include
library lending, stock fluctuation, patient diseases, and
meteorology data, to name a few. Hence, mining interval-
based sequential patterns, also referred to as temporal
patterns, has more potential to uncover useful information.

Consider an example of pattern mining from Library
datasets [3]. Usually, there is duration between the time a
reader borrows and returns a book. By extracting the users’

lending patterns, we could develop a recommendation
system for the library. This information would be more
helpful than conventional sequential time point-based pattern.
Table 1 illustrates the part of discovered temporal patterns.
We use patterns 1 and 2 for discussion. Suppose a reader
checks out the books “The Know-It-All” and “The Curious
Incident of the Dog in the Night-time” simultaneously, the
library can send him an e-mail to notify that the book “The
Hitchhiker's Guide to the Galaxy” is still on the shelf.
However, if he checks out two books at different times, the
library may send him an e-mail about the availability of the
books “Le Cosmicomiche.” Clearly, the temporal patterns
can offer a more expressive result to present correlations
among data than conventional sequential patterns.

Table 1: The temporal patterns from the Library dataset [3].

“The Restaurant at the End
of the Universe”

“The Hitchhiker's guide to
the galaxy”

“The Curious Incident of the
Dog in the Night-time”

“The Know-It-All”

“The Restaurant at the End
of the Universe”

“The Hitchhiker's guide to
the galaxy”

“The Curious Incident of the
Dog in the Night-time”

“The Know-It-All”

“Le Cosmicomiche”
“The Curious Incident of the
Dog in the Night-time”

“The Know-It-All”
“The One Hundred Years

of Solitude”
“Le Cosmicomiche”

“The Curious Incident of the
Dog in the Night-time”

“The Know-It-All”
“The One Hundred Years

of Solitude”

“Magic Toyshop”
“Nights at the Cirus”

“Wise Children”

“Burning Your Boats”“Magic Toyshop”
“Nights at the Cirus”

“Wise Children”

“Burning Your Boats”

“The Pearl in the Deep”

“I Served the King of England”

“The End of the Affair”

“The Pearl in the Deep”

“I Served the King of England”

“The End of the Affair”

“The Inheritance of Loss”

“I Served the King of England”

“The End of the Affair”

“The Inheritance of Loss”

“I Served the King of England”

“The End of the Affair”
35

(0.12%)
5

92
(0.32%)

4

97
(0.34%)

3

43
(0.15%)

2

163
(0.57%)

1

supporttemporal patternsPID

35
(0.12%)

5

92
(0.32%)

4

97
(0.34%)

3

43
(0.15%)

2

163
(0.57%)

1

supporttemporal patternsPID

In real applications, interval-based database generally
evolves with time, i.e., new data have been inserted and
appended. However, incremental mining of temporal
patterns from interval-based data is complex and arduous,
and requires a different approach from time point-based
sequential patterns. To the best of our knowledge, little
attention has been paid to this issue, partly because of the
complex relationship among event intervals. Since the
feature of time intervals differs considerably from that of
time points, the pairwise relationships between any two
interval events are intrinsically complex. When appending an
interval to an event sequence, the complex relations may lead
to the generation of a greater number of possible candidates.

Allen’s 13 temporal relations [1] are usually adopted to
describe the complex relations among intervals, as shown in
Fig. 1. However, Allen’s temporal logics are binary relations

and may be problematic when describing relationships
among more than three event intervals. An appropriate
representation is crucial for this circumstance. Various
representations [3, 5, 6, 9, 10, 13, 16] have been proposed;
however, most of them have a restriction on either ambiguity
or scalability and do not consider the processing of
incremental maintenance.

Table 2: Allen’s 13 temporal relations between two intervals.

(A+ B+) (A B)

A+ (A B+) B

A+ B+ (A B)

(A+ B+) A B

A+ B+ B A

A+ B+ A B

A equal B

A meets B

A finished-by B

A starts B

A contains B

A overlaps B

A before B

Temporal Relation

B equal A

B met-by A

B finishes A

B started-by A

B during A

B overlapped-by A

A+ A B+ BB after A

Endpoint sequencePictorial ExampleInversed Relation

(A+ B+) (A B)

A+ (A B+) B

A+ B+ (A B)

(A+ B+) A B

A+ B+ B A

A+ B+ A B

A equal B

A meets B

A finished-by B

A starts B

A contains B

A overlaps B

A before B

Temporal Relation

B equal A

B met-by A

B finishes A

B started-by A

B during A

B overlapped-by A

A+ A B+ BB after A

Endpoint sequencePictorial ExampleInversed Relation

A
B

A
B

A
B

A
B

A B

B
A

A B

A
B

A
B

A
B

A
B

A B

B
A

A B

In this paper, we aim to design algorithms to
incrementally mine temporal patterns. The contributions of
our work are as follows:

 First, we develop a new representation, dynamic
representation, to express a pattern nonambiguously.
We use the arrangement of endpoints of all intervals
to simplify the processing of complex relation
among intervals, and consider the time information
to facilitate incremental mining.

 Second, based on the dynamic representation, an
algorithm, Inc_TPMiner (Incremental Temporal
Pattern Miner), is proposed to incrementally
discover temporal patterns in database. Experimental
studies indicated that, in incremental environment,
Inc_TPMiner is efficient and outperforms other
state-of-the-art algorithms. Our experiments also
revealed that the proposed approach is scalable and
consumes a smaller memory space.

 Third, Inc_TPMiner employs some pruning
strategies to reduce the search space and avoids non-
promising database projection. The experimental
results reveal that pruning strategies can
improvement the runtime performance of
Inc_TPMiner efficiently.

 Finally, we applied Inc_TPMiner on real datasets to
demonstrate the practicability of incremental
maintenance of the temporal patterns.

The rest of the paper is organized as follows. Section 2
provides the related works. Section 3 introduces the
preliminary and the dynamic representation. Section 4
describes the Inc_TPMiner algorithm. Section 5 gives the
experiments and performance study, and we conclude in
Section 6.

II. RELATED WORKS

Some prior works have focused on incrementally mining
sequential patterns from time point-based data. Masseglia et.
al [8] use a sequence lattice included the frequent sequences
and the sequences in the negative border for incremental

mining. Zhang et al. [17] developed two algorithms, GSP+
and MFS+, for incremental mining of sequential patterns
when sequences are inserted into or deleted from the original
database. The IncSpan [4] buffers a set of semi-frequent
sequences as the candidates in the updated database which
can accelerate the mining process. IncSpan+ [11] corrects the
incompleteness and weaknesses of IncSpan. The IncSP [7]
solved the maintenance problem through effective implicit
merging and efficient separate counting. PBIncSpan [2] uses
a prefix tree to record all frequent sequences and
corresponding projected databases to incrementally mine the
sequential patterns.

Several algorithms have been proposed to discover
temporal patterns from interval-based data. Kam et al. [6]
proposed a priori-like algorithm to discover temporal
patterns based on hierarchy representation. Hoppner [8]
proposed a nonambiguous representation, relation matrix,
which exhaustively lists all binary relationships between
event intervals in a pattern. H-DFS [12] discovers frequent
arrangements by merging the id-lists iteratively to generate
temporal patterns. IEMiner [13] proposes some optimization
strategies to reduce the search space and decrease candidates
to discover temporal patterns. ARMADA [15] uses a stem-
growth method to find frequent temporal patterns from a
large database. TPrefixSpan [16] generates all the possible
candidates and then discovers frequent events and scans the
projected databases recursively to discover all temporal
patterns. SIPO [23] used the partial order among semi-
intervals and found an abstraction that can represent many
examples with similar properties. CTMiner [3] utilizes the
coincidence concept to facilitate the mining process of
temporal patterns.

All of the aforementioned algorithms only focus on
maintaining sequential patterns from time point-based data
or mining temporal patterns from time interval-based data.
Little effort has been put to maintain discovered temporal
pattern. In this paper, we discuss and design an efficient
method to incrementally mine temporal patterns from
interval-based database.

III. PROBLEM DEFINITION

Definition 1 (interval sequence and temporal database)
Let E = {e1, e2,…, ek} be the set of event symbols. We say
the triplet (ei, si, fi) E N N is an interval, where ei E,
si, fi N (natural number set) and si fi. The si and fi are
called the starting time and the finishing time, respectively.
An interval sequence q is a series of interval triplets (e1, s1,
f1), …, (en, sn, fn). The time information of q is the starting
time of first interval and the finishing time of last interval in
q, i.e., s1 and fn. A database DB = {r1, r2, …, rm} is called a
temporal database where each record ri is a pair of sequence-
id (SID) and interval sequence, i.e., ri = SIDi, qi.

Definition 2 (dynamic representation) Given an event
sequence q = (e1, s1, f1), …, (ei, si, fi), …, (en, sn, fn), Tq =
{ s1, f1, …, si, fi, …, sn, fn } is a set of all endpoints in q.
After sorting T in non-decreasing order, an endpoint
sequence qe = t1, t2, …, t2n can be derived by representing

si and fi as ei
＋ and ei

－, respectively. We use the parenthesis
to form an endpointset to indicate the times of endpoints are
the same. The corresponding endpoint sequences of 13
Allen’s temporal relations are shown in Table 1. To deal
with multiple occurrences of events, we attach occurrence
number to endpoint to distinguish multiple occurrences of
the same event type in an endpoint sequence. The dynamic
representation of q includes the corresponding endpoint
sequence qe and time information [s1, fn] of q. For example,
given an event sequence (A, 1, 3), (B, 5, 9), its time set is
{1, 3, 5, 9}; hence, the corresponding endpoint sequence is
A＋A－ B＋B－. The dynamic representation of q is A＋ A－ B＋

B－ [1, 9]. Without loss of generality, for the rest of this
paper, we suppose all the sequences in a temporal database
have been transformed into dynamic representation.

Definition 3 (temporal pattern and pattern tree) Given a
temporal database DB, a record SID, qe, [s, f] is said to
contain an endpoint sequence , if is a subsequence of qe

(represented as ⊑ qe). The support of in DB is the

number of records containing , i.e., support () = |{ SID,

qe, [s, f] DB) | ⊑ qe}|. Given a positive integer min_sup

as the support threshold, the set of temporal patterns
includes all endpoint sequences whose supports are no less
than min_sup. A frequent pattern tree (FPT) T is a tree that
represents the set of temporal patterns in database. A node d
in T stores an endpoint corresponding to a temporal pattern
that starts from the root node to d. Each node also preserves
two information, say support_value and sequence_list. The
support_value represents the support count of the temporal
pattern. The sequence_list stores a list of SIDs to represent
the sequences containing this temporal pattern.

..

INSERT

APPEND

increment
database

(db)

original
database

(DB)

updated
database

(DB’)

extended
database
(EDB)

..

INSERT

APPEND

increment
database

(db)

original
database

(DB)

updated
database

(DB’)

extended
database
(EDB)

Fig. 1: Concept of incremental update in temporal database.

Actually, two types of incremental updates for interval

sequence database are used: 1) inserting new sequences into
database, denoted as INSERT; 2) appending new intervals to
existing sequences, denoted as APPEND. An application
may include all types of updates. When the database is
updated with a combination of INSERT and APPEND, we
can regard the INSERT as a special case of APPEND, for
inserting a new sequence is equivalent to appending a new
sequence to an empty sequence, as shown in Fig. 1.

With three interval sequences q, q’ and q’’, q’’ = q ◇ q’
means q’ is the concatenation of q. q’ is called the appended

sequence of q. q’’ is an updated sequence of q appended
with q’. To facilitate the presentation of this paper, we define
increment and update databases. Given a temporal database,
DB, truncated and appended with a few event sequences
after a period, DB is called original database.

Definition 4 (increment and updated database) The
increment database db is referred to as the set of newly
appended sequences. The SIDs of the appended sequences in
db may already exist in DB. A database DB combining all
the event sequences in db is referred to as the updated
database DB’, as shown in Fig. 1.

As mentioned above, appending an interval sequence is
more challenging than conventional sequence. Since an
interval has duration, an interval in existing sequence may
merge with an interval in appended sequence. Given two
intervals I1 and I2 with the same event symbol and I1 is in
existing sequence and I2 is in appended sequence, if the end
time of I1 is the same with the start time of I2, I1 and I2 will
merge together. The interval-extension may vary the relation
among intervals in the sequence, hence also modify the
representation of the interval sequence, as shown in Fig. 2.

B B

(A finished-by B) ◇ (A starts B)
→ (A contains B)

B

AA

(A equal B) ◇ A
→ (A starts B)

B

B

A

(A equal B) ◇ B
→ (A started-by B)

B

AA

(A finished-by B) ◇ A
→ (A contains B)

relation
variation

:

pictorial
example

:

relation
variation

:

pictorial
example

:

B B

A

(A finished-by B) ◇ B
→ (A overlaps B)

B

(A equal B) ◇ (A starts B)
→ (A starts B)

relation
variation

:

pictorial
example

:

A

B

A

A A

B B

(A finished-by B) ◇ (A starts B)
→ (A contains B)

B

AA

(A equal B) ◇ A
→ (A starts B)

B

B

A

(A equal B) ◇ B
→ (A started-by B)

B

AA

(A finished-by B) ◇ A
→ (A contains B)

relation
variation

:
relation

variation
:

pictorial
example

:
pictorial
example

:

relation
variation

:
relation

variation
:

pictorial
example

:
pictorial
example

:

B B

A

(A finished-by B) ◇ B
→ (A overlaps B)

B

(A equal B) ◇ (A starts B)
→ (A starts B)

relation
variation

:
relation

variation
:

pictorial
example

:
pictorial
example

:

A

B

A

A A

Fig. 2: Variations of relation for concatenating two interval sequences.

Definition 5 (interval extension) Suppose two interval
sequences with dynamic representation, q = E1, E2, …, En,
[s , f] and q’ = E1’, E2’, …, Em’, [s’, f’], and En = (a1, …,
ax), E1’ = (b1, …, by), where Ei and Ei’ are endpointsets
and aj, bj are endpoints. We say that ai and bj are similar,
denoted as ai bj, if the event symbol of ai is identical to
the event symbol of bj. There are two kinds of
concatenation for endpoint sequences q and q’,

f f s’.

1, …,
cx+y),

i) Sequence-extension: q ◇ q’ = E1, E2, …, En, E1’,
E2’, …, Em’ i

ii) Endpoint-extension: q ◇ q’ = E1, E2, …, En-1, Ex,
E2’, …, Em’ if f = s’, where Ex = (c1, …, cx, cx+

)1 where(or

)1 where(if

)1 where(and)(if

xjab

yiba

xjab yxkx b
c

jx-k

ik

jx-kx-k

ikk

k

IV. INC_TPMINER ALGORITHM

)yi 1 where(and)(1 if ba xk a

When a temporal database DB is updated to DB’, there
are three possible cases for the temporal patterns in DB’:
Case1: A pattern is frequent in DB’, and also frequent in DB.
Case2: A pattern is frequent in DB’, and infrequent in DB
but has a frequent pattern in DB as a prefix. Case3: A
pattern is frequent in DB’, and infrequent in DB and has no
any frequent patterns in DB as a prefix.

Case1 is easy to handle since we have already stored the
information of previous mining results into FPTDB. We can
obtain the temporal patterns in Case1 by checking and
adjusting the support of every pattern in FPTDB in DB’. In
case2, although we have not preserved any information of
infrequent sequences in DB, all temporal patterns have at
least one prefix subsequence which is frequent in DB, i.e.,
the frequent prefix is stored in FPTDB. Hence, we can u
the

t as 1. Since even a pattern is infreque
in E

endpoint
postfixes need not be considered. With respect to a prefix

a

thod keeps
e information of all possible candidate set, i.e., mining

This awkward

prom
o optimization

uce unnecessary space searches.

finishing endpoint in a projected postfix is called
significant, if it has corresponding starting endpoint in p.
We construct the projected database DB |p by collecting
significant endpoints only (line 9, procedure 1). All
insignificant endpoints are eliminated since they can be
ignored in the discovery of temporal patterns.

In order to calculate the support of all patterns which are
infrequent in DB but frequent in DB’, Naïve_Me
th

tilize
 temporal patterns in FPTDB as prefix to recursively

discover the temporal patterns in Case 2. Since, in Case 3,
the temporal patterns have no information stored in previous
mining results, FPTDB, we need to scan DB’ for all new
frequent endpoints, and then use each new frequent endpoint
as prefix to construct projected database and recursively
mine all temporal patterns in Case 3.

Before introducing Inc_TPMiner, we first give an
intuitive approach, Naïve_Method, for incremental mining
temporal patterns, as shown in Algorithm 1. We will also use
it for baseline comparisons to assess the merit of
Inc_TPMiner later. It first determines the extended database,
EDB, and transforms all interval sequences in DB’ to
dynamic representation (line 3). Then it calls CPrefixSpan
on EDB and store mined results in a pattern tree, PTEDB (line
4, algorithm 1). Note that, when mining EDB, the mined
results should include both frequent and infrequent patterns,
i.e., the min_sup is se nt

DB, it still may become frequent in the updated database
DB’. For each temporal pattern in FTPDB, we update its
support count if it also exists in PTEDB and check whether it
is still frequent in DB’ (lines 5-10, algorithm 1). Finally, we
verify each remaining pattern in PTEDB in DB EDB to
adjust the support and output if it is frequent in DB’ (lines
13-20, algorithm 1).

CPrefixSpan extends the concept of projected database
from [14] and employs two optimization strategies to reduce
the search space. Since the starting endpoints and finishing
endpoints definitely occur in pairs in a sequence, we only
project the frequent finishing endpoints which have the
corresponding starting endpoints in their prefixes (lines 3-5,
procedure 1). We can prune off non-qualified patterns
before constructing projected database. Moreover, when
constructing a projected database, some s in

 p,

EDB with min_sup = 1 (line 3, algorithm 1).
approach may consume large memory and many non-

ising database projection. To remedy this problem, we
design an algorithm, Inc_TPMiner, with tw
techniques to red

Algorithm 1: Naïve_Method (DB’, min_sup, FPTDB)

Input: DB’ pdated temporal da se, min_
t pattern tree of o nal DB

: u taba sup: the minimum support, FPTDB:

ee of updated database DB’

m DB’ into dynamic representation and find

ete node in PTEDB ;

in FPTDB ;
of node in PTEDB ;

 PTEDB do

ent node in PTEDB ;

 , min_sup, FPTDB)

” then
then

06: if c is a “starting endpoint” then

frequen rigi
Output: FPTDB’ :

frequent pattern tr

01: FPTDB’ EDB ← ; PT ← ;
02: determine EDB;
03: rval extension to transforuse inte

all frequent endpoints concurrently;
04: PTEDB ← Prefi EDB

05: node in T
 C xSpan (EDB, , PT);

for each FP DB d
06: PT

o
 if EDB

07: update support (d

) an del
08: pport () min_sup if su
09: insert node to FPTDB’ ;
10: else
11: e l e t no delete nod and a l its desc nden de
12: scan D D once for updating the support B－E B
13: for each node in
14: if support() min_sup
15: ert node to FPT ; ins DB’

16: else
17: delete node and all its d escend
18: frequent endpoint b FPTfor each DB’ do
19: CPrefixSpan (DB’, b, min_sup, FPTDB’);
20: t FPT ; Outpu DB’

Proc C efixSpan (DBedure 1: Pr
01: scan DB once

| ,
| and find all frequent endpoints c;

02: a oin do for e ch frequent endp t c
03: a “fi ishing poi t if c is n end n
04: i o n s f exist corresp ndi g tarting endpoint in
05: append c to to form ;

07: append c to to form ;
08: for each do
09: construct projected database DB| with insignificant postfix elimination;
10: if |DB| | min_sup then
11: insert into FPTDB ;
12: call CPrefixSpan (DB| , , min_sup, FPTDB);

Definition 6 (search reduction) Given a temporal pattern
in DB (node in FPTDB), when DB is updated to DB’,
incre_sid is defined as a set of all SIDs in increment
database db and incre_endpoint | is defined as a set of all
event slices in db |. We have two search space reductions,
i) Sequence-reduction: If {’ s sequence list}∩incre_sid =

 , then DB | is identical to DB’ |. The support of and
all temporal patterns prefixed with , i.e., node and all

child nodes of in FPTDB, are unchanged in DB’. Hence
there is no temporal pattern which is infrequent in DB
but becomes frequent in DB’ with as prefix. We can
stop searching and all ’s child nodes in FPTDB.

ii) Endpoint-reduction: If ’ s parent node in in FPTDB does
not insert any node as child node when DB is updated to
DB’, and the set of { and all ’ s sibling nodes}∩
incre_ endpoint | = , then the support of and all
temporal patterns prefixed with , i.e., node and all

0% nodes in FPTDB, especially when
so the main
orms other

a
me

min_sup, FPT)

child nodes of in FPTDB, are unchanged in DB’. Hence
there is no temporal pattern which is infrequent in DB
but becomes frequent in DB’ with as prefix. We can
stop searching and all child nodes of in FPTDB.

The search space reduction in Definition 6 plays an

important role in Inc_TPMiner. When the minimum support
goes lower and the maintained patterns turn to be longer,
many unnecessary searches can be avoided effectively. As
observed in our experiments, the search space reduction can
kip more than 6s

minimum support is extremely low. This is al
reason why Inc_TPMiner not only outperf
lgorithms in runtime performance, but also consumes less

ory space. The pseudo codm e of Inc_TPMiner is shown
s in Algorithm 2. a

Algorithm 2: Inc_TPMiner (DB’, DB

Input: DB’: updated temporal database, min_sup: the minimum support, FPT : DB

ic presentation

dpoints in

DB ;
 in FPTDB do

09:
10:

frequent pattern tree of original DB
Output: FPTDB’ : frequent pattern tree of updated database DB’

// initial Phase

EDB; 01: FPTDB’ ← ; determine
02: use interval_extension to transform DB’ into dynam

ent endpoints concurrently; and find all frequ
03: NFS ← new frequent endpoints in DB’ ; // frequent en

DB’ FPTDB
// mining phase
04: for each endpoint b in NFS do
05: insert b into FPTDB’ ;
06: call CPrefixSpan (DB’ |b , b , min_sup, FPTDB’);
// extending phase

r update the support of node in FPT 07: scan DB’ once fo
08: for each node

 FPTDB ← CPrefixSpan (DB’, , min_sup, FPTDB);
 for each node in FPTDB min_supdo

11: insert into FPTDB’ ;
12: if search_reduction (, DB’ |) = “false” // search reduction
13: call CPrefixSpan (DB’ | , , min_sup, FPTDB’);
14: Output FPTDB’ ;

There are three phases in Inc_TPMiner, initial phase,

mining phase and extending phase. Initial phase first uses the
interval extension to transform all sequences into dynamic
representation (line 2), and scans db once to discover all new
frequent endpoints in DB’. Notice that, if we store previous
infrequent endpoints in DB, we can find the complete set of
new frequent endpoints in DB’ by just scan EDB without
rescanning DB again (Line 3). Then, in mining phase, we use
each new frequent slice as prefix to construct projected
database and call CPrefixSpan (procedure 1) to discover the

temporal patterns (Lines 4-6 algorithm 2). Note that the
search_reduction technique in Definition 7 can be used in
CP

Final phase, ner updates the
support attern is still
freq

nt
scenario to reflect the influe updated
environme o observe
the scalability on execution time of Inc_TPMiner. Finally,
we use a real dataset [3] to show the performance and the
practicability of incremental mining for temporal patterns.

Table 3: Parameters of synthetic data generator.

refixSpan when we call it recursively. We can add one
line “ if search_reduction (, DB’ |) = “false” ” before line
12 in procedure 1. We utilize search_reduction to check
whether growing can stop. If not, we recursively call
CPrefixSpan to discover the temporal patterns.

ly, in extending Inc_TPMi
 of every frequent pattern in DB. If a p

uent in DB’, we also use search_reduction to check if we
can stop growing. If not, CPrefixSpan is called to discover
the temporal patterns (Lines 12-13, algorithm 2).

V. EXPERIMENTAL RESULT

To evaluate the performance of Inc_TPMiner, we
implement CTMiner [3], TPrefixSpan [15], IEMiner [13]
and Naïve method for comparison. All algorithms were
implemented in C++ language and tested on a computer with
Pentium D 3.0 GHz with 2 GB of main memory. The
performance study has been conducted on both synthetic and
real world datasets. First, we compare the execution time and
memory usage using synthetic datasets at extreme low
minimum support. Second, we run Inc_TPMiner on differe

nce on performance of
nts. Third, we conduct an experiment t

Ratio of the number of intervals of an existed sequence
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

Ratio of the number of intervals of an existed sequence
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

The synthetic datasets are generated using synthetic
generation program [3]. Since the original data generation
program was designed to generate static database, the
generator requires modifications on incremental scenario
accordingly. The parameter setting of temporal data
generator is shown in Table 3. We partition the updated
database DB’ into the original database DB and increment
database db, as the example in Fig. 1. Different settings of
three parameters are used to reflect different updating
scenarios. Parameter Rinc, called increment ratio, decides the
size of the increment database db. We pick | D | × Rinc
sequences randomly into db and place remaining | D | ×
(1–Rinc) sequences into DB. Furthermore, we use extended
ratio, Rext, to divide event sequences in db to “old”
sequences, which’s sid have appeared in DB, and “new”
inserted sequences. Total | db | × Rext sequences were

randomly chosen from db as “old” sequence which were to
be split further. The splitting of event sequences is to
simulate that some intervals are cond

B), while th maining intervals are n
ucted formerly (thus in

e re ewly appended (thus
 db). The splitting is controlled by the third parameter Rapp,

the appended ratio. If a sequence with total m intervals is to
split, we placed the leading m × (1–Rapp) intervals in DB
and the remaining m × Rapp intervals in dba.

D
in

(b) The memory usage of five algorithms

minimum support (%)

m
em

ory usage (M
B

)

D10k – C10 – N1k

0

50

100

150

200

250

300

0.01 0.009 0.008 0.007 0.006 0.005

(a) The execution time of five algorithms

minimum support (%)

execution tim
e (secs)

D10k – C10 – N1k

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

0

20

40

60

80

100

120

0.01 0.009 0.008 0.007 0.006 0.005

TprefixSpan
Inc_TPMinerNaive method
CTMinerIEMiner

(b) The memory usage of five algorithms

minimum support (%)

m
em

ory usage (M
B

)

D10k – C10 – N1k

0

50

100

150

200

250

300

0.01 0.009 0.008 0.007 0.006 0.005
0

50

100

150

200

250

300

0.01 0.009 0.008 0.007 0.006 0.005

(a) The execution time of five algorithms

minimum support (%)

execution tim
e (secs)

D10k – C10 – N1k

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

0

20

40

60

80

100

120

0.01 0.009 0.008 0.007 0.006 0.005
0

20

40

60

80

100

120

0.01 0.009 0.008 0.007 0.006 0.005

TprefixSpan
Inc_TPMinerNaive method
CTMinerIEMiner

TprefixSpan
Inc_TPMinerNaive method
CTMinerIEMiner

TprefixSpanTprefixSpan
Inc_TPMinerInc_TPMinerNaive methodNaive method
CTMinerCTMinerIEMinerIEMiner

0
0.01 0.009 0.008 0.007 0.006 0.005

100

200

300

400

500

600

700

800

(d) The memory usage of five algorithms
minimum support (%)

(c) The execution time of five algorithms

execution tim
e (secs

D100k – C20 – N10k

Inc_TPMiner

)

Naive method

CTMiner
IEMiner

TprefixSpan

0
0.01 0.009 0.008 0.007 0.006 0.005

minimum support (%)

5000

10000

sage (M
B

)

15000

20000

25000

m
em

ory u

D100k – C20 – N10k

TprefixSpan

Inc_TPMiner

Naive method

CTMiner

IEMiner

0
0.01 0.009 0.008 0.007 0.006 0.005

100

200

300

400

500

600

700

800

0
0.01 0.009 0.008 0.007 0.006 0.005

100

200

300

400

500

600

700

800

(d) The memory usage of five algorithms
minimum support (%)

(c) The execution time of five algorithms

execution tim
e (secs

D100k – C20 – N10k

Inc_TPMiner

)

Naive method

CTMiner
IEMiner

TprefixSpan

0
0.01 0.009 0.008 0.007 0.006 0.005

5000

10000

15000

20000

25000

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

0
0.01 0.009 0.008 0.007 0.006 0.005

minimum support (%)

5000

10000

sage (M
B

)

15000

20000

25000

m
em

ory u

D100k – C20 – N10k

TprefixSpan

Inc_TPMiner

Naive method

CTMiner

IEMiner

TprefixSpanTprefixSpan

Inc_TPMinerInc_TPMiner

Naive methodNaive method

CTMinerCTMiner

IEMinerIEMiner

Fig. 3: Execution time and memory usage on synthetic datasets.

5.1 Execution time and memory usage

In all the following experiments, two parameters are fixed,
i.e., the average size of potentially frequent sequences, | S | =
4, and the number of potentially frequent sequences, NS =
5,000. We set Rinc = 10%, Rext = 50% and Rapp = 20% to
model common database updating scenario. The first
experiment for comparison of five algorithms is on the
dataset D10k–C10–N1k with the minimum support
thresholds varying from 0.01 % to 0.005 %. Obviously, re-
mining from scratch with non-incremental algorithm is less
efficient than using incremental maintaining algorithm, as
illustrated in Fig. 3(a). When we continue to lower the
minimum threshold, the runtime of Inc_TPMiner
outperforms the other four algorithms. We can see that when
the support is larger than 0.009 %, CTMiner outperforms
Na

We can see that although Naïve method has
etter performance on execution time than re-running

CTMiner from scratch, it involves larger memory space for
execution partly because of storing every possible frequent
sequences and doing many non-promising database
projection.

D100K– C20 – N10k – Rinc10% – Rapp20%

extended ratio Rext

execution tim
e ratio

D100K– C20 – N10k – Rext50% – Rapp20%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10% 25% 50% 75% 100%

CTMiner / Inc_TPMiner

CTMiner / Naive method

CTMiner / Inc_TPMiner

CTMiner / Naive method

0

1

2

3

4

5

6

1% 2% 5% 10% 15% 20% 30% 40%

increment ratio Rinc

execution tim
e ratio

(a) Execution ratio over varying increment ratios (b) Execution ratio over varying extended ratios

D100K– C20 – N10k – Rinc10% – Rapp20%

extended ratio Rext

execution tim
e ratio

D100K– C20 – N10k – Rext50% – Rapp20%

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10% 25% 50% 75% 100%
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

10% 25% 50% 75% 100%

CTMiner / Inc_TPMiner

CTMiner / Naive method

CTMiner / Inc_TPMiner

CTMiner / Naive method

CTMiner / Inc_TPMiner

CTMiner / Naive method

CTMiner / Inc_TPMiner

CTMiner / Naive method

0

1

2

3

4

5

6

1% 2% 5% 10% 15% 20% 30% 40%

increment ratio Rinc

execution tim
e ratio

(a) Execution ratio over varying increment ratios (b) Execution ratio over varying extended ratios

ïve method partly because of the generation of a fewer
number of frequent patterns for the maintenance. The
memory usages of five algorithms are showed as in Fig. 3(b).
We can see that Inc_TPMiner consumes less memory than
the other four algorithms.

The second experiment is performed on data set D100k–
C20–N10k, which contains 100,000 event sequences,
average length 40 and 10,000 event intervals with common
database updating scenario. The execution time of different
algorithms is shown in Fig. 3(c). We can see that when the
support is 0.005%, Inc_TPMiner is more than 2.4 times
faster than Naïve method. Fig. 3(d) shows the memory
usages of five algorithms with different minimum support
thresholds.
b

C20 – N10k – Rinc10% – Rext50% – Rapp20%

execution tim
e

number of sequences in database | D |

100K 200K 300K 400K 500K

 (secs)

0

50

100

150

200

250

300

0

1

2

3e ratio

4

5

6

7

execution tim

D100K– C20 – N10k – Rinc10% – Rext50%

10% 30% 50% 70% 90%

appended ratio Rapp

CTMiner / Inc_TPMiner

CTMiner / Naive method
0.030%
0.025%

0.020%

0.015%
0.010%

(d) The performance with different database size(c) Execution time over varying appended ratios

number of sequences in database | D |

100K 200K 300K 400K 500K

C20 – N10k – Rinc10% – Rext50% – Rapp20%

execution tim
e (secs)

0

50

100

150

200

250

300

100K 200K 300K 400K 500K

0

50

100

150

200

250

300

4

5

6

7

0

1

2

3

10% 30% 50% 70% 90%
0

1

2

3e ratio

4

5

6

7

execution tim

D100K– C20 – N10k – Rinc10% – Rext50%

10% 30% 50% 70% 90%

appended ratio Rapp

CTMiner / Inc_TPMiner

CTMiner / Naive method

CTMiner / Inc_TPMiner

CTMiner / Naive method
0.030%
0.025%

0.020%

0.015%
0.010%0.010% 0.025%0.025%
0.015% 0.030%0.030%

0.020%

(d) The performance with different database size(c) Execution time over varying appended ratios
Fig. 4: Execution time on different updating scenario and scalability test.

5.2 Different updating scenario and scalability test

In order to reflect the influence of incremental
environment on time performance, three parameters,
increment ratio, extended ratio and appended ratio, are
configured to generate different updating scenarios for
comparing the execution times. Generally, incremental
mining algorithms gain less at higher increment ratio because
larg

rger, say over 40%,
Inc_

ext

er increment ratio means more sequences appearing in db
and causes more pattern updates. If most of the frequent
sequences in DB turn out to be invalid in DB’, the
information stored by maintenance algorithms in pattern
updating might become useless.

Fig. 4(a) is the results of varying increment ratio, Rinc,
from 1% to 40% on D100k – C20 – N10k. The min_sup is
fixed at 0.01%. Note that we use the execution time ratio to
show the improvement of incremental mining algorithms
over CTMiner (i.e., the execution time of incremental
maintaining algorithm / the execution time of Inc_TPMiner).
As indicated in Fig. 4(a), the smaller the increment database
db is, the more time Inc_TPMiner could save. Inc_TPMiner
is still faster than CTMiner even when Rinc reaches 40%.
When Rinc becomes much la

TPMiner is slower than CTMiner. When the size of the
increment database becomes larger than the size of the
original database, i.e. the database has accumulated dramatic
change, re-mining from scratch might be a better choice for
the totally new sequence database.

The impact of the extended ratio, Rext, is presented in
Fig. 4(b) on D100k – C20 – N10k dataset with min_sup =
0.01%. Clearly, Inc_TPMiner updates patterns more
efficiently than Naïve method and CTMiner. Higher Rext
means that there are more sequences in the original database
expended in the increment database. Consequently, the
speedup ratio decreases as the R increases because more

appended sequence need to be processed. We can observe
that Inc_TPMiner is efficient even when the Rext is
increased to 100%, i.e., all the sequences in the increment
database are extended from original database. Fig. 4(c)
depicts the performance comparisons of Inc_TPMiner and
Naïv

0%. Fig. 4(d)
ows the results of scalability tests with different min_sup

varying from 0.03 % to 0.01 %. As can be seen, under
different minimum support threshold, Inc_TPMiner is s
linearly scalable with different database size.

e method with CTMiner concerning appended ratios,
Rapp, on D100k – C20 – N10k dataset. We can see that
Inc_TPMiner is constantly about 5.3 times faster than
CTMiner over various Rapp, ranging from 10% to 90%.

We also study the scalability on the execution time of
Inc_TPMiner. Here, the total number of sequences is
increased from 100K to 500K, with fixed parameters C = 20,
N = 10k, Rinc = 10%, Rext = 50% and Rapp = 2
sh

till

minimum support (%)

execution tim
e (secs)

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

0
0.1 0.09 0.08 0.07 0.06 0.05

2000

4000

6000

8000

10000

12000

14000

increment of database

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Inc_TPMiner

CTMiner

execution tim
e (secs)

(a

execution tim
e (secs)

Inc_TPMiner

(b) Multiple increments in Library dataset [3]) Performance of algorithms on Library dataset [3]

minimum support (%)

Naive method

CTMiner
IEMiner

TprefixSpan

Inc_TPMiner
Naive method

CTMiner
IEMiner

TprefixSpan

0
0.1 0.09 0.08 0.07 0.06 0.05

2000

4000

6000

8000

10000

12000

14000

0
0.1 0.09 0.08 0.07 0.06 0.05

2000

4000

6000

8000

10000

12000

14000

increment of database

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Inc_TPMiner

CTMiner

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6

Inc_TPMiner

CTMiner

Inc_TPMiner

CTMiner

execution tim
e (secs)

(a

coll

time for in n also increases, but increase
very smal ll outperform
min

ory usage of Inc_TPMiner
outperform previous al gned based on static

, Y. Xiong and Y. Zhu, “Incremental

n, J. Jiang, W. Peng and S. Lee, “An Efficient Algorithm for

ate on sequential patterns in

seglia, P. Poncelet and M. Teisseire, “Incremental mining of

obust mining of time intervals with

lowska, “Improvements of IncSpan:

apetrou, G. Kollios, S. Sclaroff, and D. Gunopulos,

 “PrefixSpan: Mining Sequential Patterns Efficiently by

n rules from interval-

 Chen, “Mining Nonambiguous Temporal Patterns for
Interval-Based Events,” IEEE Transactions on Knowledge and Data
Engineering, vol.19, no. 6, pp. 742-758, 2007.

(b) Multiple increments in Library dataset [3]) Performance of algorithms on Library dataset [3]
Fig. 5: Performance test on Library dataset [3].

6.3 Real World Dataset Analysis

In addition to using synthetic datasets, we have also
performed an experiment on real dataset to compare the
performance and indicate the applicability of temporal
pattern mining. The Library dataset [3] consists of a lar

ection lending and returning records of a library for
three years. First, we use the records of first two and half
years to construct the original database DB and use the
record of last half year to build the increment database db.

Fig. 5(a) shows the performance of execution time with
varying minimum support thresholds. As min_sup drops to
0.05 %, Inc_TPMiner is almost 2 times faster than Naïve
method and more than 2.7 times faster than CTMiner.
Finally, we discuss the performance of Inc_TPMiner to
process multiple database updates. We still use the records
of first two and half years to construct DB and divide the
records of the rest half years by every one month to build
six different db. Fig. 5(b) shows the performance of
Inc_TPMiner, with min_sup = 0.1%, to incrementally
maintain multiple database updates. Each time the database
is updated, we also run CTMiner to re-mine from scratch for
comparison. Clearly, when the increments accumulate, the

is cremental mini g
l. The incremental mining sti s re- based data,” Data & Knowledge Engineering, vol. 63, issue 1, pp. 76-

90, 2007.

[15] S. Wu and Y.
ing with CTMiner by a factor of 2.5 or 3.5. Obviously,

Inc_TPMiner is efficient for multiple updates of database.

VI. CONCLUSION

Little attention has been paid to the incremental mining
of temporal patterns from interval-based data. Since the
process of complex relations among intervals may require
generating and examining large amount of intermediate
subsequences, incrementally mining temporal patterns is a
challenging problem. In this paper, we develop a new
representation, dynamic representation, to simplify the
processing of complex relation and facilitate incremental
mining. Furthermore, a new algorithm, Inc_TPMiner, is
developed to balance the efficiency and reusability with two
optimization methods, sequence-reduction and slice-
reduction. The experimental results indicate that both
execution time and mem

gorithms desi
database. Finally, we apply the algorithm on real dataset to
show the efficiency and the practicability of incremental

ing of temporal patterns. min

REFERENCES
[1] J. Allen, "Maintaining Knowledge about Temporal Intervals,”

Communications of ACM, vol.26, issue 11, pp.832-843, 1983.

[2] Y. Chen, J. Guo, Y. Wang
Mining of Sequential Patterns using Prefix Tree,” PAKDD’07, pp.
433-440, 2007.

[3] Y. Che
Mining Time Interval-based Patterns in Large Databases,” ACM
CIKM’10, pp. 49-58, 2010.

[4] H. Cheng, X. Yan and J. Han, “IncSpan: Incremental Mining of
Sequential Patterns in Large Database,” ACM KDD’04, pp. 527-532,
2004

[5] F. Hoppner, “Finding informative rules in interval sequences,”
Intelligent Data Analysis, vol. 6, no. 3, pp. 237-255, 2002.

[6] P. Kam and W. Fu, “Discovering Temporal Patterns for Interval-
based Events,” DaWaK’00, pp. 317-326, 2000.

[7] M. Lin and S. Lee, “Incremental upd
ge databases by implicit merging and efficient counting,”

Information Systems, vol. 29, issue 5, pp. 385-404, 2004.

[8] F. Mas
sequential patterns in large databases,” Data & Knowledge
Engineering, vol.46, pp.97–121, 2003

[9] F. Morchen and D. Fradkin, “R
semi-interval partial order patterns,” SIAM SDM’10, pp.315-326,
2010.

[10] S. Nguyen, X. Sun, M. Or
Incremental Mining of Sequential Patterns in Large Database,”
PAKDD’05, pp. 442-451, 2005.

[11] P. Pap
“Discovering frequent arrangements of temporal intervals,” IEEE
ICDM’05, pp. 354-361, 2005.

[12] D. Patel, W. Hsu and M. Lee, “Mining Relationships Among
Interval-based Events for Classification,” ACM KDD’08, pp. 393-404,
2008.

[13] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal, and
M.C. Hsu,
Prefix-Projected Pattern Growth,” IEEE ICDE’01, pp. 215-224, 2001.

[14] E. Winarko and J.F Roddick, “ARMADA-An algorithm for
discovering richer relative temporal associatio

[16] M. Zhang, B. Kao, D. Cheung, and C. Yip, “Efficient algorithms for
incremental updates of frequent sequences,” PAKDD’02, pp.186-197,
2002.

	I. Introduction
	II. Related Works
	III. Problem Definition
	IV. Inc_TPMiner Algorithm
	V. Experimental Result
	5.1 Execution time and memory usage
	5.2 Different updating scenario and scalability test
	6.3 Real World Dataset Analysis

	VI. Conclusion
	References

