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Abstract—In several applications, sequence databases 
generally update incrementally with time. Obviously, it is 
impractical and inefficient to re-mine sequential patterns from 
scratch every time a number of new sequences are added into 
the database. Some recent studies have focused on mining 
sequential patterns in an incremental manner; however, most 
of them only considered patterns extracted from time point-
based data. In this paper, we proposed an efficient algorithm, 
Inc_TPMiner, to incrementally mine sequential patterns from 
interval-based data. We also employ some optimization 
techniques to reduce the search space effectively. The 
experimental results indicate that Inc_TPMiner is efficient in 
execution time and possesses scalability. Finally, we show the 
practicability of incremental mining of interval-based 
sequential patterns on real datasets.  

Keywords- dynamic representation; incremental mining; 
interval-based pattern; sequential pattern mining 

I.  INTRODUCTION  

Sequential pattern mining is an essential data mining 
technique with broad applications. Several efficient 
algorithms exhibit excellent performance in discovering 
sequential patterns from a static database, i.e., mining the 
entire database from scratch. However, the assumption of 
having a static database may not hold in some applications. 
Usually, new data may be added over time. The result 
discovered from the original database may no longer be valid. 
Apparently, for each database update, re-mining the 
databases from scratch is inefficient because it wastes the 
computational resources and neglects the previous results. 

Previous research on incremental mining [2, 4, 7, 8, 11, 
17] mainly focused on sequential patterns discovered from 
time point-based data. However, prior efforts have revealed 
that mining time interval-based patterns is more practical [3, 
5, 6, 9, 10, 12, 13, 15, 16] in reality. In many applications, 
some events that intrinsically persist for periods of time 
instead of instantaneous occurrences cannot be treated as 
“time points.” The data is usually a sequence of interval 
events with starting and finishing times. Examples include 
library lending, stock fluctuation, patient diseases, and 
meteorology data, to name a few. Hence, mining interval-
based sequential patterns, also referred to as temporal 
patterns, has more potential to uncover useful information. 

Consider an example of pattern mining from Library 
datasets [3]. Usually, there is duration between the time a 
reader borrows and returns a book. By extracting the users’ 

lending patterns, we could develop a recommendation 
system for the library. This information would be more 
helpful than conventional sequential time point-based pattern. 
Table 1 illustrates the part of discovered temporal patterns. 
We use patterns 1 and 2 for discussion. Suppose a reader 
checks out the books “The Know-It-All” and “The Curious 
Incident of the Dog in the Night-time” simultaneously, the 
library can send him an e-mail to notify that the book “The 
Hitchhiker's Guide to the Galaxy” is still on the shelf. 
However, if he checks out two books at different times, the 
library may send him an e-mail about the availability of the 
books “Le Cosmicomiche.” Clearly, the temporal patterns 
can offer a more expressive result to present correlations 
among data than conventional sequential patterns. 
 

Table 1: The temporal patterns from the Library dataset [3]. 

“The Restaurant at the End 
of the Universe”

“The Hitchhiker's guide to 
the galaxy”
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In real applications, interval-based database generally 
evolves with time, i.e., new data have been inserted and 
appended. However, incremental mining of temporal 
patterns from interval-based data is complex and arduous, 
and requires a different approach from time point-based 
sequential patterns. To the best of our knowledge, little 
attention has been paid to this issue, partly because of the 
complex relationship among event intervals. Since the 
feature of time intervals differs considerably from that of 
time points, the pairwise relationships between any two 
interval events are intrinsically complex. When appending an 
interval to an event sequence, the complex relations may lead 
to the generation of a greater number of possible candidates. 

Allen’s 13 temporal relations [1] are usually adopted to 
describe the complex relations among intervals, as shown in 
Fig. 1. However, Allen’s temporal logics are binary relations 



and may be problematic when describing relationships 
among more than three event intervals. An appropriate 
representation is crucial for this circumstance. Various 
representations [3, 5, 6, 9, 10, 13, 16] have been proposed; 
however, most of them have a restriction on either ambiguity 
or scalability and do not consider the processing of 
incremental maintenance. 
 

Table 2: Allen’s 13 temporal relations between two intervals. 
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In this paper, we aim to design algorithms to 
incrementally mine temporal patterns. The contributions of 
our work are as follows: 

 First, we develop a new representation, dynamic 
representation, to express a pattern nonambiguously. 
We use the arrangement of endpoints of all intervals 
to simplify the processing of complex relation 
among intervals, and consider the time information 
to facilitate incremental mining. 

 Second, based on the dynamic representation, an 
algorithm, Inc_TPMiner (Incremental Temporal 
Pattern Miner), is proposed to incrementally 
discover temporal patterns in database. Experimental 
studies indicated that, in incremental environment, 
Inc_TPMiner is efficient and outperforms other 
state-of-the-art algorithms. Our experiments also 
revealed that the proposed approach is scalable and 
consumes a smaller memory space.  

 Third, Inc_TPMiner employs some pruning 
strategies to reduce the search space and avoids non-
promising database projection. The experimental 
results reveal that pruning strategies can 
improvement the runtime performance of 
Inc_TPMiner efficiently. 

 Finally, we applied Inc_TPMiner on real datasets to 
demonstrate the practicability of incremental 
maintenance of the temporal patterns. 

The rest of the paper is organized as follows. Section 2 
provides the related works. Section 3 introduces the 
preliminary and the dynamic representation. Section 4 
describes the Inc_TPMiner algorithm. Section 5 gives the 
experiments and performance study, and we conclude in 
Section 6. 

II. RELATED WORKS 

Some prior works have focused on incrementally mining 
sequential patterns from time point-based data. Masseglia et. 
al [8] use a sequence lattice included the frequent sequences 
and the sequences in the negative border for incremental 

mining. Zhang et al. [17] developed two algorithms, GSP+ 
and MFS+, for incremental mining of sequential patterns 
when sequences are inserted into or deleted from the original 
database. The IncSpan [4] buffers a set of semi-frequent 
sequences as the candidates in the updated database which 
can accelerate the mining process. IncSpan+ [11] corrects the 
incompleteness and weaknesses of IncSpan. The IncSP [7] 
solved the maintenance problem through effective implicit 
merging and efficient separate counting. PBIncSpan [2] uses 
a prefix tree to record all frequent sequences and 
corresponding projected databases to incrementally mine the 
sequential patterns. 

Several algorithms have been proposed to discover 
temporal patterns from interval-based data. Kam et al. [6] 
proposed a priori-like algorithm to discover temporal 
patterns based on hierarchy representation. Hoppner [8] 
proposed a nonambiguous representation, relation matrix, 
which exhaustively lists all binary relationships between 
event intervals in a pattern. H-DFS [12] discovers frequent 
arrangements by merging the id-lists iteratively to generate 
temporal patterns. IEMiner [13] proposes some optimization 
strategies to reduce the search space and decrease candidates 
to discover temporal patterns. ARMADA [15] uses a stem-
growth method to find frequent temporal patterns from a 
large database. TPrefixSpan [16] generates all the possible 
candidates and then discovers frequent events and scans the 
projected databases recursively to discover all temporal 
patterns. SIPO [23] used the partial order among semi-
intervals and found an abstraction that can represent many 
examples with similar properties. CTMiner [3] utilizes the 
coincidence concept to facilitate the mining process of 
temporal patterns.  

All of the aforementioned algorithms only focus on 
maintaining sequential patterns from time point-based data 
or mining temporal patterns from time interval-based data. 
Little effort has been put to maintain discovered temporal 
pattern. In this paper, we discuss and design an efficient 
method to incrementally mine temporal patterns from 
interval-based database. 

III. PROBLEM DEFINITION 

Definition 1 (interval sequence and temporal database) 
Let E = {e1, e2,…, ek} be the set of event symbols. We say 
the triplet (ei, si, fi)  E  N  N is an interval, where ei  E, 
si, fi  N (natural number set) and si  fi. The si and fi are 
called the starting time and the finishing time, respectively. 
An interval sequence q is a series of interval triplets (e1, s1, 
f1), …, (en, sn, fn). The time information of q is the starting 
time of first interval and the finishing time of last interval in 
q, i.e., s1 and fn. A database DB = {r1, r2, …, rm} is called a 
temporal database where each record ri is a pair of sequence-
id (SID) and interval sequence, i.e., ri = SIDi, qi. 
 
Definition 2 (dynamic representation) Given an event 
sequence q = (e1, s1, f1), …, (ei, si, fi), …, (en, sn, fn), Tq = 
{ s1, f1, …, si, fi, …, sn, fn } is a set of all endpoints in q. 
After sorting T in non-decreasing order, an endpoint 
sequence qe = t1, t2, …, t2n can be derived by representing 



si and fi as ei
＋ and ei

－, respectively. We use the parenthesis 
to form an endpointset to indicate the times of endpoints are 
the same. The corresponding endpoint sequences of 13 
Allen’s temporal relations are shown in Table 1. To deal 
with multiple occurrences of events, we attach occurrence 
number to endpoint to distinguish multiple occurrences of 
the same event type in an endpoint sequence. The dynamic 
representation of q includes the corresponding endpoint 
sequence qe and time information [s1, fn] of q. For example, 
given an event sequence (A, 1, 3), (B, 5, 9), its time set is 
{1, 3, 5, 9}; hence, the corresponding endpoint sequence is 
A＋A－ B＋B－. The dynamic representation of q is   A＋ A－ B＋ 

B－  [1, 9]. Without loss of generality, for the rest of this 
paper, we suppose all the sequences in a temporal database 
have been transformed into dynamic representation.   
 
Definition 3 (temporal pattern and pattern tree) Given a 
temporal database DB, a record SID, qe, [s, f ] is said to 
contain an endpoint sequence , if  is a subsequence of qe 

(represented as  ⊑ qe). The support of  in DB is the 

number of records containing , i.e., support () = |{ SID, 

qe, [s, f  ] DB) |  ⊑ qe}|. Given a positive integer min_sup 

as the support threshold, the set of temporal patterns 
includes all endpoint sequences whose supports are no less 
than min_sup. A frequent pattern tree (FPT) T is a tree that 
represents the set of temporal patterns in database. A node d 
in T stores an endpoint corresponding to a temporal pattern 
that starts from the root node to d. Each node also preserves 
two information, say support_value and sequence_list. The 
support_value represents the support count of the temporal 
pattern. The sequence_list stores a list of SIDs to represent 
the sequences containing this temporal pattern. 
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Fig. 1: Concept of incremental update in temporal database. 

 
Actually, two types of incremental updates for interval 

sequence database are used: 1) inserting new sequences into 
database, denoted as INSERT; 2) appending new intervals to 
existing sequences, denoted as APPEND. An application 
may include all types of updates. When the database is 
updated with a combination of INSERT and APPEND, we 
can regard the INSERT as a special case of APPEND, for 
inserting a new sequence is equivalent to appending a new 
sequence to an empty sequence, as shown in Fig. 1. 

With three interval sequences q, q’  and q’’, q’’ = q ◇ q’ 
means q’ is the concatenation of q. q’ is called the appended 

sequence of q. q’’ is an updated sequence of q appended 
with q’. To facilitate the presentation of this paper, we define 
increment and update databases. Given a temporal database, 
DB, truncated and appended with a few event sequences 
after a period, DB is called original database. 

 
Definition 4 (increment and updated database) The 
increment database db is referred to as the set of newly 
appended sequences. The SIDs of the appended sequences in 
db may already exist in DB. A database DB combining all 
the event sequences in db is referred to as the updated 
database DB’, as shown in Fig. 1. 
 

As mentioned above, appending an interval sequence is 
more challenging than conventional sequence. Since an 
interval has duration, an interval in existing sequence may 
merge with an interval in appended sequence. Given two 
intervals I1 and I2 with the same event symbol and I1 is in 
existing sequence and I2 is in appended sequence, if the end 
time of I1 is the same with the start time of I2, I1 and I2 will 
merge together. The interval-extension may vary the relation 
among intervals in the sequence, hence also modify the 
representation of the interval sequence, as shown in Fig. 2. 
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Fig. 2: Variations of relation for concatenating two interval sequences. 

 
Definition 5 (interval extension) Suppose two interval 
sequences with dynamic representation, q = E1, E2, …, En, 
[s , f  ] and q’ = E1’, E2’, …, Em’, [s’, f’ ], and En = (a1, …, 
ax), E1’ = (b1, …, by), where Ei and Ei’ are endpointsets 
and aj, bj are endpoints. We say that ai and bj are similar, 
denoted as ai  bj, if the event symbol of ai is identical to 
the event symbol of bj. There are two kinds of 
concatenation for endpoint sequences q and q’,  

f f  s’. 

1, …, 
cx+y),  

 

i) Sequence-extension:  q ◇ q’ = E1, E2, …, En, E1’, 
E2’, …, Em’ i

ii) Endpoint-extension:  q ◇ q’ = E1, E2, …, En-1, Ex, 
E2’, …, Em’ if f = s’, where Ex = (c1, …, cx, cx+
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IV. INC_TPMINER ALGORITHM 

   )yi 1  where( and )(1 if ba xk   a 

When a temporal database DB is updated to DB’, there 
are three possible cases for the temporal patterns in DB’: 
Case1: A pattern is frequent in DB’, and also frequent in DB. 
Case2: A pattern is frequent in DB’, and infrequent in DB 
but has a frequent pattern in DB as a prefix. Case3: A 
pattern is frequent in DB’, and infrequent in DB and has no 
any frequent patterns in DB as a prefix. 

Case1 is easy to handle since we have already stored the 
information of previous mining results into FPTDB. We can 
obtain the temporal patterns in Case1 by checking and 
adjusting the support of every pattern in FPTDB in DB’. In 
case2, although we have not preserved any information of 
infrequent sequences in DB, all temporal patterns have at 
least one prefix subsequence which is frequent in DB, i.e., 
the frequent prefix is stored in FPTDB. Hence, we can u
the

t as 1. Since even a pattern is infreque
in E

endpoint
postfixes need not be considered. With respect to a prefix

a 

thod keeps 
e information of all possible candidate set, i.e., mining 

This awkward 

prom
o optimization 

uce unnecessary space searches. 

finishing endpoint in a projected postfix is called 
significant, if it has corresponding starting endpoint in p. 
We construct the projected database DB |p by collecting 
significant endpoints only (line 9, procedure 1). All 
insignificant endpoints are eliminated since they can be 
ignored in the discovery of temporal patterns. 

In order to calculate the support of all patterns which are 
infrequent in DB but frequent in DB’, Naïve_Me
th

tilize 
 temporal patterns in FPTDB as prefix to recursively 

discover the temporal patterns in Case 2. Since, in Case 3, 
the temporal patterns have no information stored in previous 
mining results, FPTDB, we need to scan DB’ for all new 
frequent endpoints, and then use each new frequent endpoint 
as prefix to construct projected database and recursively 
mine all temporal patterns in Case 3. 

Before introducing Inc_TPMiner, we first give an 
intuitive approach, Naïve_Method, for incremental mining 
temporal patterns, as shown in Algorithm 1. We will also use 
it for baseline comparisons to assess the merit of 
Inc_TPMiner later. It first determines the extended database, 
EDB, and transforms all interval sequences in DB’ to 
dynamic representation (line 3). Then it calls CPrefixSpan 
on EDB and store mined results in a pattern tree, PTEDB (line 
4, algorithm 1). Note that, when mining EDB, the mined 
results should include both frequent and infrequent patterns, 
i.e., the min_sup is se nt 

DB, it still may become frequent in the updated database 
DB’. For each temporal pattern in FTPDB, we update its 
support count if it also exists in PTEDB and check whether it 
is still frequent in DB’ (lines 5-10, algorithm 1). Finally, we 
verify each remaining pattern in PTEDB in DB  EDB to 
adjust the support and output if it is frequent in DB’ (lines 
13-20, algorithm 1). 

CPrefixSpan extends the concept of projected database 
from [14] and employs two optimization strategies to reduce 
the search space. Since the starting endpoints and finishing 
endpoints definitely occur in pairs in a sequence, we only 
project the frequent finishing endpoints which have the 
corresponding starting endpoints in their prefixes (lines 3-5, 
procedure 1).  We can prune off non-qualified patterns 
before constructing projected database. Moreover, when 
constructing a projected database, some s in 

 p, 

EDB with min_sup = 1 (line 3, algorithm 1). 
approach may consume large memory and many non-

ising database projection. To remedy this problem, we 
design an algorithm, Inc_TPMiner, with tw
techniques to red
 
Algorithm 1: Naïve_Method ( DB’, min_sup, FPTDB ) 

Input: DB’ pdated temporal da se, min_
t pattern tree of o nal DB 

: u taba sup: the minimum support, FPTDB: 

ee of updated database DB’ 

m DB’ into dynamic representation and find 

ete node  in PTEDB ; 

in FPTDB ; 
of node in PTEDB ; 

 PTEDB  do 

ent node in PTEDB ; 

 , min_sup, FPTDB ) 

” then 
then 

06:     if c is a “starting endpoint” then 

frequen rigi
Output: FPTDB’ : 
 

frequent pattern tr

01: FPTDB’ EDB ← ; PT  ← ; 
02: determine EDB; 
03: rval extension to transforuse inte

all frequent endpoints concurrently; 
04: PTEDB  ← Prefi EDB

05:  node  in T
 C xSpan (EDB,  , PT ); 

for each FP DB  d
06:   PT

o 
     if EDB

07:           update support ( d 
 

) an del
08: pport ( )  min_sup      if su
09:           insert node  to FPTDB’ ; 
10:      else 
11:      e l e t no     delete nod  and a l its desc nden de 
12: scan D  D  once for updating the support B－E B
13: for each node  in
14:      if support( )   min_sup 
15:          ert node  to FPT  ;  ins DB’

16:      else 
17: delete node  and all its d          escend
18:  frequent endpoint b  FPTfor each DB’  do 
19:      CPrefixSpan ( DB’, b, min_sup, FPTDB’ ); 
20: t FPT  ; Outpu DB’

 
Proc C efixSpan (DBedure 1: Pr
01: scan DB  once

| , 
|  and find all frequent endpoints c; 

02: a oin do for e ch frequent endp t c 
03:     a “fi ishing poi t  if c is n  end n
04:       i o n s    f exist corresp ndi g tarting endpoint in  
05:                append c to  to form  ; 

07:          append c to  to form  ; 
08: for each  do 
09:      construct projected database DB|  with insignificant postfix elimination; 
10:      if |DB| |   min_sup then 
11:           insert  into FPTDB ; 
12:   call CPrefixSpan (DB| , , min_sup, FPTDB ); 

 
Definition 6 (search reduction) Given a temporal pattern  
in DB (node  in FPTDB), when DB is updated to DB’, 
incre_sid is defined as a set of all SIDs in increment 
database db and incre_endpoint | is defined as a set of all 
event slices in db |. We have two search space reductions, 
i) Sequence-reduction: If {’ s sequence list}∩incre_sid = 

 , then DB | is identical to DB’ |. The support of  and 
all temporal patterns prefixed with , i.e., node  and all 



child nodes of  in FPTDB, are unchanged in DB’. Hence 
there is no temporal pattern which is infrequent in DB 
but becomes frequent in DB’ with  as prefix. We can 
stop searching  and all ’s child nodes in FPTDB. 

ii) Endpoint-reduction: If ’ s parent node in in FPTDB does 
not insert any node as child node when DB is updated to 
DB’, and the set of { and all ’ s sibling nodes}∩
incre_ endpoint | = , then the support of  and all 
temporal patterns prefixed with , i.e., node  and all 

0% nodes in FPTDB, especially when 
so the main 
orms other 

a  
me

 
min_sup, FPT  ) 

child nodes of  in FPTDB, are unchanged in DB’. Hence 
there is no temporal pattern which is infrequent in DB 
but becomes frequent in DB’ with  as prefix. We can 
stop searching  and all child nodes of  in FPTDB. 

 
The search space reduction in Definition 6 plays an 

important role in Inc_TPMiner. When the minimum support 
goes lower and the maintained patterns turn to be longer, 
many unnecessary searches can be avoided effectively. As 
observed in our experiments, the search space reduction can 
kip more than 6s

minimum support is extremely low. This is al
reason why Inc_TPMiner not only outperf
lgorithms in runtime performance, but also consumes less

ory space. The pseudo codm e of Inc_TPMiner is shown 
s in Algorithm 2. a

Algorithm 2: Inc_TPMiner ( DB’, DB

Input: DB’: updated temporal database, min_sup: the minimum support, FPT : DB

ic presentation 

dpoints in 

DB ; 
  in FPTDB  do 

09:
10:

frequent pattern tree of original DB 
Output: FPTDB’ : frequent pattern tree of updated database DB’ 
 
// initial Phase 

EDB; 01: FPTDB’  ← ; determine 
02: use interval_extension to transform DB’ into dynam

ent endpoints concurrently; and find all frequ
03: NFS ← new frequent endpoints in DB’ ; // frequent en

DB’  FPTDB 
// mining phase  
04: for each endpoint b in NFS do 
05:      insert b into FPTDB’  ; 
06:      call CPrefixSpan (DB’ |b , b , min_sup, FPTDB’  ); 
// extending phase  

r update the support of node in FPT  07: scan DB’ once fo
08: for each node 

      FPTDB  ← CPrefixSpan ( DB’, , min_sup, FPTDB); 
      for each node  in FPTDB   min_supdo 

11:           insert  into FPTDB’  ; 
12:      if search_reduction (, DB’ | ) = “false” // search reduction 
13:           call CPrefixSpan (DB’ | ,  , min_sup, FPTDB’  );  
14: Output FPTDB’  ; 

 
There are three phases in Inc_TPMiner, initial phase, 

mining phase and extending phase. Initial phase first uses the 
interval extension to transform all sequences into dynamic 
representation (line 2), and scans db once to discover all new 
frequent endpoints in DB’. Notice that, if we store previous 
infrequent endpoints in DB, we can find the complete set of 
new frequent endpoints in DB’ by just scan EDB without 
rescanning DB again (Line 3). Then, in mining phase, we use 
each new frequent slice as prefix to construct projected 
database and call CPrefixSpan (procedure 1) to discover the 

temporal patterns (Lines 4-6 algorithm 2). Note that the 
search_reduction technique in Definition 7 can be used in 
CP

Final phase, ner updates the 
support attern is still 
freq

nt 
scenario to reflect the influe updated 
environme o observe 
the scalability on execution time of Inc_TPMiner. Finally, 
we use a real dataset [3] to show the performance and the 
practicability of incremental mining for temporal patterns. 

 

Table 3: Parameters of synthetic data generator. 

refixSpan when we call it recursively. We can add one 
line “ if search_reduction (, DB’ | ) = “false” ” before line 
12 in procedure 1. We utilize search_reduction to check 
whether growing can stop. If not, we recursively call 
CPrefixSpan to discover the temporal patterns. 

ly, in extending  Inc_TPMi
 of every frequent pattern in DB. If a p

uent in DB’, we also use search_reduction to check if we 
can stop growing. If not, CPrefixSpan is called to discover 
the temporal patterns (Lines 12-13, algorithm 2). 

V. EXPERIMENTAL RESULT 

To evaluate the performance of Inc_TPMiner, we 
implement CTMiner [3], TPrefixSpan [15], IEMiner [13] 
and Naïve method for comparison. All algorithms were 
implemented in C++ language and tested on a computer with 
Pentium D 3.0 GHz with 2 GB of main memory. The 
performance study has been conducted on both synthetic and 
real world datasets. First, we compare the execution time and 
memory usage using synthetic datasets at extreme low 
minimum support. Second, we run Inc_TPMiner on differe

nce on performance of 
nts. Third, we conduct an experiment t

Ratio of the number of intervals of an existed sequence 
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new 
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

Ratio of the number of intervals of an existed sequence 
appearing in original database DB to increment database db

Rapp

Ratio of the number of existed sequences extended to new 
sequences inserted in increment database db

Rext

Ratio of the number of sequences in increment database db
to updated database DB’

Rinc

Number of event symbolsN

Number of potentially frequent sequencesNS

Average size of potentially frequent sequences| S |

Average size of event sequences| C |

Number of event sequences| D |

descriptionparameters

 
 

The synthetic datasets are generated using synthetic 
generation program [3]. Since the original data generation 
program was designed to generate static database, the 
generator requires modifications on incremental scenario 
accordingly. The parameter setting of temporal data 
generator is shown in Table 3. We partition the updated 
database DB’ into the original database DB and increment 
database db, as the example in Fig. 1. Different settings of 
three parameters are used to reflect different updating 
scenarios. Parameter Rinc, called increment ratio, decides the 
size of the increment database db. We pick | D | × Rinc 
sequences randomly into db and place remaining | D | × 
(1–Rinc) sequences into DB. Furthermore, we use extended 
ratio, Rext, to divide event sequences in db to “old” 
sequences, which’s sid have appeared in DB, and “new” 
inserted sequences. Total | db | ×  Rext sequences were 



randomly chosen from db as “old” sequence which were to 
be split further. The splitting of event sequences is to 
simulate that some intervals are cond

B), while th maining intervals are n
ucted formerly (thus in 

e re ewly appended (thus 
 db). The splitting is controlled by the third parameter Rapp, 

the appended ratio. If a sequence with total m intervals is to 
split, we placed the leading m × (1–Rapp) intervals in DB 
and the remaining m × Rapp intervals in dba. 
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Fig. 3: Execution time and memory usage on synthetic datasets. 

5.1 Execution time and memory usage 

In all the following experiments, two parameters are fixed, 
i.e., the average size of potentially frequent sequences, | S | = 
4, and the number of potentially frequent sequences, NS = 
5,000. We set Rinc = 10%, Rext = 50% and Rapp = 20% to 
model common database updating scenario. The first 
experiment for comparison of five algorithms is on the 
dataset D10k–C10–N1k with the minimum support 
thresholds varying from 0.01 % to 0.005 %. Obviously, re-
mining from scratch with non-incremental algorithm is less 
efficient than using incremental maintaining algorithm, as 
illustrated in Fig. 3(a). When we continue to lower the 
minimum threshold, the runtime of Inc_TPMiner 
outperforms the other four algorithms. We can see that when 
the support is larger than 0.009 %, CTMiner outperforms 
Na

We can see that although Naïve method has 
etter performance on execution time than re-running 

CTMiner from scratch, it involves larger memory space for 
execution partly because of storing every possible frequent 
sequences and doing many non-promising database 
projection. 
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ïve method partly because of the generation of a fewer 
number of frequent patterns for the maintenance. The 
memory usages of five algorithms are showed as in Fig. 3(b). 
We can see that Inc_TPMiner consumes less memory than 
the other four algorithms. 

The second experiment is performed on data set D100k–
C20–N10k, which contains 100,000 event sequences, 
average length 40 and 10,000 event intervals with common 
database updating scenario. The execution time of different 
algorithms is shown in Fig. 3(c). We can see that when the 
support is 0.005%, Inc_TPMiner is more than 2.4 times 
faster than Naïve method. Fig. 3(d) shows the memory 
usages of five algorithms with different minimum support 
thresholds. 
b
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Fig. 4: Execution time on different updating scenario and scalability test. 

5.2 Different updating scenario and scalability test 

In order to reflect the influence of incremental 
environment on time performance, three parameters, 
increment ratio, extended ratio and appended ratio, are 
configured to generate different updating scenarios for 
comparing the execution times. Generally, incremental 
mining algorithms gain less at higher increment ratio because 
larg

rger, say over 40%, 
Inc_

ext

er increment ratio means more sequences appearing in db 
and causes more pattern updates. If most of the frequent 
sequences in DB turn out to be invalid in DB’, the 
information stored by maintenance algorithms in pattern 
updating might become useless. 

Fig. 4(a) is the results of varying increment ratio, Rinc, 
from 1% to 40% on D100k – C20 – N10k. The min_sup is 
fixed at 0.01%. Note that we use the execution time ratio to 
show the improvement of incremental mining algorithms 
over CTMiner (i.e., the execution time of incremental 
maintaining algorithm / the execution time of Inc_TPMiner). 
As indicated in Fig. 4(a), the smaller the increment database 
db is, the more time Inc_TPMiner could save.  Inc_TPMiner 
is still faster than CTMiner even when Rinc reaches 40%. 
When Rinc becomes much la

TPMiner is slower than CTMiner. When the size of the 
increment database becomes larger than the size of the 
original database, i.e. the database has accumulated dramatic 
change, re-mining from scratch might be a better choice for 
the totally new sequence database. 

The impact of the extended ratio, Rext, is presented in 
Fig. 4(b) on D100k – C20 – N10k dataset with min_sup = 
0.01%. Clearly, Inc_TPMiner updates patterns more 
efficiently than Naïve method and CTMiner. Higher Rext 
means that there are more sequences in the original database 
expended in the increment database. Consequently, the 
speedup ratio decreases as the R  increases because more 



appended sequence need to be processed. We can observe 
that Inc_TPMiner is efficient even when the Rext is 
increased to 100%, i.e., all the sequences in the increment 
database are extended from original database. Fig. 4(c) 
depicts the performance comparisons of Inc_TPMiner and 
Naïv

0%. Fig. 4(d) 
ows the results of scalability tests with different min_sup 

varying from 0.03 % to 0.01 %. As can be seen, under 
different minimum support threshold, Inc_TPMiner is s
linearly scalable with different database size. 
 

e method with CTMiner concerning appended ratios, 
Rapp, on D100k – C20 – N10k dataset. We can see that 
Inc_TPMiner is constantly about 5.3 times faster than 
CTMiner over various Rapp, ranging from 10% to 90%. 

We also study the scalability on the execution time of 
Inc_TPMiner. Here, the total number of sequences is 
increased from 100K to 500K, with fixed parameters C = 20, 
N = 10k, Rinc = 10%, Rext = 50% and Rapp = 2
sh
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(b) Multiple increments in Library dataset [3]) Performance of algorithms on Library dataset [3]  
Fig. 5: Performance test on Library dataset [3]. 

6.3 Real World Dataset Analysis 

In addition to using synthetic datasets, we have also 
performed an experiment on real dataset to compare the 
performance and indicate the applicability of temporal 
pattern mining. The Library dataset [3] consists of a lar

ection lending and returning records of a library for 
three years. First, we use the records of first two and half 
years to construct the original database DB and use the 
record of last half year to build the increment database db.  

Fig. 5(a) shows the performance of execution time with 
varying minimum support thresholds. As min_sup drops to 
0.05 %, Inc_TPMiner is almost 2 times faster than Naïve 
method and more than 2.7 times faster than CTMiner. 
Finally, we discuss the performance of Inc_TPMiner to 
process multiple database updates. We still use the records 
of first two and half years to construct DB and divide the 
records of the rest half years by every one month to build 
six different db. Fig. 5(b) shows the performance of 
Inc_TPMiner, with min_sup = 0.1%, to incrementally 
maintain multiple database updates. Each time the database 
is updated, we also run CTMiner to re-mine from scratch for 
comparison. Clearly, when the increments accumulate, the 

is cremental mini g
l. The incremental mining sti s re- based data,” Data & Knowledge Engineering, vol. 63, issue 1, pp. 76-

90, 2007. 

[15] S. Wu and Y.
ing with CTMiner by a factor of 2.5 or 3.5. Obviously, 

Inc_TPMiner is efficient for multiple updates of database. 

VI. CONCLUSION 

Little attention has been paid to the incremental mining 
of temporal patterns from interval-based data. Since the 
process of complex relations among intervals may require 
generating and examining large amount of intermediate 
subsequences, incrementally mining temporal patterns is a 
challenging problem. In this paper, we develop a new 
representation, dynamic representation, to simplify the 
processing of complex relation and facilitate incremental 
mining. Furthermore, a new algorithm, Inc_TPMiner, is 
developed to balance the efficiency and reusability with two 
optimization methods, sequence-reduction and slice-
reduction. The experimental results indicate that both 
execution time and mem

gorithms desi
database. Finally, we apply the algorithm on real dataset to 
show the efficiency and the practicability of incremental 

ing of temporal patterns. min
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